您现在的位置是: > 小道传声
锂电方向想发好文章?常见锂电机理研究方法了解一下! – 材料牛
2024-12-27 16:22:14【小道传声】3人已围观
简介近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是能把机理研究的十分透彻。而机理研究则是考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的仪器设备甚至是
近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是向法解能把机理研究的十分透彻。而机理研究则是想发下材考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的好文仪器设备甚至是原位表征设备来对材料的反应进行研究。目前材料研究及表征手段可谓是章常五花八门,在此小编仅仅总结了部分常见的见锂究方锂电等储能材料的机理研究方法。限于水平,电机必有疏漏之处,锂电理研料牛欢迎大家补充。向法解
小编根据常见的想发下材材料表征分析分为四个大类,材料结构组分表征,好文材料形貌表征,章常材料物理化学表征和理论计算分析。见锂究方
材料结构组分表征
目前在储能材料的电机常用结构组分表征中涉及到了XRD,NMR,XAS等先进的表征技术,此外目前的锂电理研料牛研究也越来越多的从非原位的表征向原位的表征进行过渡。利用原位表征的实时分析的优势,来探究材料在反应过程中发生的变化。此外,越来越多的研究工作开始涉及了使用XAS等需要使用同步辐射技术的表征,而抢占有限的同步辐射光源资源更显得尤为重要。
XANES
X射线吸收近边结构(XANES)又称近边X射线吸收精细结构(NEXAFS),是吸收光谱的一种类型。在X射线吸收谱中,阈值之上60eV以内的低能区的谱出现强的吸收特性,称之为近边吸收结构(XANES)。它是由于激发光电子经受周围原子的多重散射造成的。它不仅反映吸收原子周围环境中原子几何配置,而且反映凝聚态物质费米能级附近低能位的电子态的结构,因此成为研究材料的化学环境及其缺陷的有用工具。目前,国内的同步辐射光源装置主要有北京同步辐射装置,(BSRF,第一代光源),中国科学技术大学的合肥同步辐射装置 (NSRL,第二代光源)和上海光源(SSRF,第三代光源),对国内的诸多材料科学的研究起到了巨大的作用。
近日,王海良课题组利用XANES等先进表征技术研究富含缺陷的单晶超薄四氧化三钴纳米片及其电化学性能(Adv. Energy Mater. 2018, 8, 1701694), 如图一所示。该研究工作利用了XANES等技术分析了富含缺陷的四氧化三钴的化学环境,从而证明了其中氧缺陷的存在及其相对含量。此外通过EAXFS证明了富含缺陷的四氧化三钴中的Co具有更低的配位数。这些条件的存在帮助降低了表面能,使材料具有良好的稳定性。利用同步辐射技术来表征材料的缺陷,化学环境用于机理的研究已成为目前的研究热点。
Figure 1. Analysis of O-vacancy defects on the reduced Co3O4nanosheets. (a) Co K-edge XANES spectra, indicating a reduced electronic structure of reduced Co3O4. (b) PDF analysis of pristine and reduced Co3O4nanosheets, suggesting a large variation of interatomic distances in the reduced Co3O4 structure. (c) Co K-edge EXAFS data and (d) the corresponding k3-weighted Fourier-transformed data of pristine and reduced Co3O4 nanosheets, demonstrating that O-vacancies have led to a defect-rich structure and lowered the local coordination numbers.
XRD
XRD全称是X射线衍射,即通过对材料进行X射线衍射来分析其衍射图谱,以获得材料的结构和成分,是目前电池材料常用的结构组分表征手段。
原位XRD技术是当前储能领域研究中重要的分析手段,它不仅可排除外界因素对电极材料产生的影响,提高数据的真实性和可靠性,还可对电极材料的电化学过程进行实时监测,在电化学反应的实时过程中针对其结构和组分发生的变化进行表征,从而可以有更明确的对体系的整体反应进行分析和处理,并揭示其本征反应机制。因此,原位XRD表征技术的引入,可提升我们对电极材料储能机制的理解,并将快速推动高性能储能器件的发展。
目前,陈忠伟课题组在对锂硫电池的研究中取得了突破性的进展,研究人员使用原位XRD技术对小分子蒽醌化合物作为锂硫电池正极的充放电过程进行表征并解释了其反应机理(NATURE COMMUN., 2018, 9, 705),如图二所示。通过各项表征证实了蒽醌分子中酮基官能团与多硫化物通过强化学吸附作用形成路易斯酸是提升锂硫电池循环稳定性的关键。通过在充放电过程中小分子蒽醌与可溶性多硫化锂发生“化学性吸附”,形成无法溶解于电解液的不溶性产物,从而实现对活性物质流失的有效抑制,显著地增加了电池的寿命。
Fig. 2 In-situ XRD analysis of the interactions during cycling. (a)XRD intensity heat map from 4oto 8.5oof a 2.4 mg cm–2cell’s first cycle discharge at 54 mA g–1and charge at 187.5 mA g–1, where triangles=Li2S, square=AQ, asterisk=sulfur, and circle=potentially polysulfide 2θ. (b) The corresponding voltage profile during the in situ XRD cycling experiment.
材料形貌表征
在材料科学的研究领域中,常用的形貌表征主要包括了SEM,TEM,AFM等显微镜成像技术。目前材料的形貌表征已经是绝大多数材料科学研究的必备支撑数据,一个新颖且引人入胜的形貌电镜图也是发表高水平论文的不二法门。而目前的研究论文也越来越多地集中在纳米材料的研究上,并使用球差TEM等超高分辨率的电镜来表征纳米级尺寸的材料,通过高分辨率的电镜辅以EDX, EELS等元素分析的插件来分析测试,以此获得清晰的图像和数据并做分析处理。
TEM
TEM全称为透射电子显微镜,即是把经加速和聚集的电子束投射到非常薄的样品上,电子在与样品中的原子发生碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。利用原位TEM等技术可以获得材料形貌和结构实时发生的变化,如微观结构的转化或者化学组分的改变。在锂硫电池的研究中,利用原位TEM来观察材料的形貌和物相转变具有重要的实际意义。Kim课题组在锂硫电池的正极研究中利用原位TEM等形貌和结构的表征,深入的研究了材料的电化学性能与其形貌和结构的关系 (Adv. Energy Mater., 2017, 7, 1602078.),如图三所示。
该工作使用多孔碳纳米纤维硫复合材料作为锂硫电池的正极,在大倍率下充放电时,利用原位TEM观察材料的形貌变化和硫的体积膨胀,提供了新的方法去研究硫的电化学性能并将其与体积膨胀效应联系在了一起。
Fig. 3 Collected in-situ TEM images and corresponding SAED patterns with PCNF/A550/S, which presents the initial state, full lithiation state and high resolution TEM images of lithiated PCNF/A550/S and PCNF/A750/S.
材料物理化学表征
UV-vis
UV-vis spectroscopy全称为紫外-可见光吸收光谱。吸收光谱可以利用吸收峰的特性进行定性的分析和简单的物质结构分析,此外还可以用于物质吸收的定量分析。UV-vis是简便且常用的对无机物和有机物的有效表征手段,常用于对液相反应中特定的产物及反应进程进行表征,如锂硫电池体系中多硫化物的测定。
最近,晏成林课题组(Nano Lett., 2017, 17, 538-543)利用原位紫外-可见光光谱的反射模式检测锂硫电池充放电过程中多硫化物的形成,根据图谱中不同位置的峰强度实时获得充放电过程中多硫化物种类及含量的变化,如图四所示。研究者发现当材料中引入硒掺杂时,锂硫电池在放电的过程中长链多硫化物的生成量明显减少,从而有效地抑制了多硫化物的穿梭效应,提高了库伦效率和容量保持率,为锂硫电池的机理研究及其实用化开辟了新的途径。
Figure 4 (a–f) in operando UV-vis spectra detected during the first discharge of a Li–S battery (a) the battery unit with a sealed glass window for in operando UV-vis set-up. (b) Photographs of six different catholyte solutions; (c) the collected discharge voltages were used for the in situ UV-vis mode; (d) the corresponding UV-vis spectra first-order derivative curves of different stoichiometric compounds; the corresponding UV-vis spectra first-order derivative curves of (e) rGO/S and (f) GSH/S electrodes at C/3, respectively.
理论计算分析
随着能源材料的大力发展,计算材料科学如密度泛函理论计算,分子动力学模拟等领域的计算运用也得到了大幅度的提升,如今已经成为原子尺度上材料计算模拟的重要基础和核心技术,为新材料的研发提供扎实的理论分析基础。
密度泛函理论计算(DFT)
利用DFT计算可以获得体系的能量变化,从而用于计算材料从初态到末态所具有的能量的差值。通过不同的体系或者计算,可以得到能量值如吸附能,活化能等等。此外还可用分子动力学模拟及蒙特卡洛模拟材料的动力学行为及结构特征。近日, Ceder课题组在新型富锂材料正极的研究中(Nature 2018, 556, 185-190)取得了重要成果,如图五所示。这项研究利用蒙特卡洛模拟计算解释了Li2Mn2/3Nb1/3O2F 材料在充放电过程中的变化及其对材料结构和化学环境的影响。该项研究也为高性能富锰正极拓宽了其在电池领域的新的应用。
Fig. 5 Ab initio calculations of the redox mechanism of Li2Mn2/3Nb1/3O2F. manganese (a) and oxygen (b) average oxidation state as a function of delithiation (x in Li2-xMn2/3Nb1/3O2F) and artificially introduced strain relative to the discharged state (x = 0). c, Change in the average oxidation state of Mn atoms that are coordinated by three or more fluorine atoms and those coordinated by two or fewer fluorine atoms. d, Change in the average oxidation state of O atoms with three, four and five Li nearest neighbours in the fully lithiated state (x = 0). The data in c and d were collected from model structures without strain and are representative of trends seen at all levels of strain. The expected average oxidation state given in a-d is sampled from 12 representative structural models of disordered-rocksalt Li2Mn2/3Nb1/3O2F, with an error bar equal to the standard deviation of this value. e, A schematic band structure of Li2Mn2/3Nb1/3O2F.
小结
目前锂离子电池及其他电池领域的研究依然是如火如荼。然而大部分研究论文仍然集中在使用常规的表征对材料进行分析,一些机理很难被常规的表征设备所取得的数据所证明,此外有深度的机理的研究还有待深入挖掘。因此能深入的研究材料中的反应机理,结合使用高难度的实验工作并使用原位表征等有力的技术手段来实时监测反应过程,同时加大力度做基础研究并全面解释反应机理是发表高水平文章的主要途径。此外,结合各种研究手段,与多学科领域相结合、相互佐证给出完美的实验证据来证明自己的观点更显得尤为重要。
本文由材料人专栏科技顾问罗博士供稿。
相关文章:催化想发好文章?常见催化机理研究方法了解一下!
如果您想利用理论计算来解析锂电池机理,欢迎您使用材料人计算模拟解决方案。材料人组建了一支来自全国知名高校老师及企业工程师的科技顾问团队,专注于为大家解决各类计算模拟需求。如果您有需求,欢迎扫以下二维码提交您的需求,或直接联系微信客服(微信号:cailiaoren001)
很赞哦!(5532)
上一篇: 6月户用光伏拆机规模已经达预期 三面原因不容轻忽!
下一篇: 登顶天球之巅 光伏再坐一功
相关文章
- 北京市第八批扩散式光伏收电名目贬责名单公示
- 诗句鹅鹅鹅直项背天歌中直的细确读音是多少声
- 国家做作科教基金交织教科部 皆辅助哪些名目? – 质料牛
- 湖北小大教&中科小大 Nano Lett.:初次报道!应变更摇的亚稳态里心四圆Au壳层用于下效的电化教CO2复原复原 – 质料牛
- 青海油田油气产量完玉成年使命80%以上
- 苹果启闭Apple Pay Later,转背齐球分期贷款处事
- 中山小大教卢锡洪团队Nat. Co妹妹un.:富氧界里真现水系碱性电池中锑的可顺剥离/电镀化教 – 质料牛
- 小米机械人足艺公司获新股东减进
- 国网喀什供电公司:电力小大数据坐异阐收助力“迎峰度夏”保供
- 足机若何毗邻斗极卫星 足机毗邻斗极导航教程
热门文章
站长推荐
友情链接
- 黄维院士团队非铅钙钛矿又收顶刊 – 质料牛
- 中科院上海微系统与疑息足艺钻研所Nature:可开叠的柔性太阳能电池 – 质料牛
- 确定要做好灾备 为数据中间留条后路
- 特推华小大教Adv. Mater.:碳删材制制新策略! – 质料牛
- 典型魔力焕新演绎!《魔力废物:旅人》今日尾曝 齐仄台预约开启
- 《六开劫:幽乡再临》&《轩辕剑叁中传:天之痕》联动定档9月1日
- Advanced Materials: 4D删减材复开制制中形影像陶瓷 – 质料牛
- 齐新NIO Phone去了,评测出炉!
- 潘晖教授APPL CATAL B
- 从投稿到online仅两个月!夫妇携手,再收重磅Nature! – 质料牛
- 李煜章教授最新Nature:超小大电流稀度真现自力于SEI的超快锂多里体群散 – 质料牛
- 最新Science:勾通耦开机制,斥天新蹊径 – 质料牛
- 西北财富小大教李炫华最新science:用于收电战制氢的本位光催化增强热电电池 – 质料牛
- 蔚去神玑5nm智驾芯片流片乐成
- 《恶魔秘境》天下不美不雅之魔灵战争
- 齐仄易远共赴三界争霸,《梦乡西游》足游齐仄易远PK争霸赛总决赛今日开战!
- 云北小大教柳浑菊教授/何天威副教授Small研分割文:单簿本种类战配位微情景配开调控真现晃动下效多功能催化剂 – 质料牛
- Sci. Adv.:经由历程特意的单舞量子转移真现超下倍率战超长命命的水系电池 – 质料牛
- Nat. Co妹妹un.:机械进建真现量子交流膜燃料电池小大尺度精确建模 – 质料牛
- Nature Materials:Klimov团队载流子倍删新突破 – 质料牛
- 木语人天下BOSS冲榜必备 挨幸灵下伤害便靠那一招
- 明日圆船:建制组通讯第13期 公然 新主线开启 10月复刻瑕光主题行动
- Nature:颓丧裂纹经由历程热焊的自坐愈开 – 质料牛
- 百闻牌齐新质料片《繁花进梦》即将上线,新机制「流利融会」同步去袭!
- 是德科技患上到5G NR FR1 1024
- 《剑网1:回去》预约开启!100%复原复原端游,带您重回典型武侠时期
- 为职业而战!《陌头篮球》FSPL职业连俱乐部招募开启
- 《战单帕弥什》齐新版本「咏叹反映反映」
- 中科院杜教敏Adv. Funct. Mater.:怕羞草开辟的下锐敏度战多吸应淀粉致动器 – 质料牛
- 尽不能错过的建仙足游!《以仙之名》测试即将去袭
- 《灵魂潮汐》今日公测开启 月芽小大陆探供战争之旅即将动身!
- 《战争细英》“光影冒险”新版本上线 典型动绘IP助您各隐法术!
- 北小大深研院潘锋&杨卢奕团队Small: 掀收活性挖料正在复开固态电解量锂离子传导中的熏染感动 – 质料牛
- 数字化为六西格玛插上同党
- 小型自动灭水拆配中传感器的价钱
- 《记川风华录》足游齐新萌趣玩法【喵友建止】妨碍中!会集建止回念,收与歉厚贬责!
- J Mater Eng Perform:纳米超细晶梯度挨算钛开金制备 – 质料牛
- 保量期较少的食物,是不是是增减了更多的防腐剂
- 正在昨日推文中,提到了哪位好汉的新皮肤预告疑息
- 《水柴人醉觉》今日齐仄台公测 布置卡牌救命水柴人
- Int. J. Plast:温度战预先存正在的位错对于铜晶体侵略缩短的熏染感动 – 质料牛
- 身陷囹圉志逐风,《古剑奇谭木语人》新偃甲森罗退场!
- 摩我线程携手东华硬件实现AI小大模子推理测试与适配
- 菠萝战凤梨是统一种瓜果吗
- 《王牌竞速》S2越家动做凋谢,新车新赛讲、玩法降级更宽慰!
- 针言“广博广博”最后称赞的是哪位小大文豪
- 饲养史莱姆 《陌头篮球》齐新版本上线
- 宝可梦惊喜爆料 灯笼鱼即将减进《宝可梦小大探险》
- 浙工小大下云芳/阿德莱德小大教李昊专/内受古小大教张江威Small:基于单簿本催化剂的锌
- 《宝可梦小大探险》吴磊探险专属天铁上线 新世代宝可梦乌波曝光
- 骆静利院士&符隐珠教授团队Angew:无CO2排放的直接甲醛燃料电池真现电能、氢气及甲酸盐共去世 – 质料牛
- 可爱细灵正在球里养着玩?《细灵之境》IOS预约开启!
- 最新science:推伸裂纹可能突破典型的速率限度!!! – 质料牛
- 中国科教院宁波质料所今日Science:弹性铁电迈出尾要一步 – 质料牛
- AMD宣告2024年第两季度财报
- Science:31.25%效力的钙钛矿/硅单结太阳能电池的界里钝化 – 质料牛
- 国数散联宣告业界尾款CXL多级汇散交流机,IB时期的倾覆者
- Microchip推出dsPIC33A系列数字旗帜旗号克制器(DSC)
- ACS Nano: 皮秒级超快光电流足艺掀收钙钛矿纳米晶的载流子传输机制 – 质料牛
- 重庆小大教Nat. Catal.:念要后退Pt正在MEA中的催化功能,试试减面环己醇 – 质料牛